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Abstract

Conversational recommender systems (CRS)
aim to timely trace the dynamic interests of
users through dialogues and generate relevant
responses for item recommendations. Recently,
various external knowledge bases (especially
knowledge graphs) are incorporated into CRS
to enhance the understanding of conversation
contexts. However, recent reasoning-based
models heavily rely on simplified structures
such as linear structures or fixed-hierarchical
structures for causality reasoning, hence they
cannot fully figure out sophisticated relation-
ships among utterances with external knowl-
edge. To address this, we propose a novel Tree-
structure Reasoning schEmA named TREA.
TREA constructs a multi-hierarchical scalable
tree as the reasoning structure to clarify the
causal relationships between mentioned en-
tities, and fully utilizes historical conversa-
tions to generate more reasonable and suitable
responses for recommended results. Exten-
sive experiments on two public CRS datasets
have demonstrated the effectiveness of our
approach. Our code is available at https:
//github.com/WindyLee0822/TREA

1 Introduction

Conversation Recommender System (CRS) has
become increasingly popular as its superiority in
timely discovering user dynamic preferences in
practice. As opposed to traditional passive-mode
recommendation systems, it highlights the impor-
tance of proactively clarifying and tracing user
interests through live conversation interactions,
which notably enhance the success rate of item
recommendations.

Since sole contextual utterances are insufficient
for comprehensively understanding user prefer-
ences, there are many efforts devoted to incorporat-
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ing various external knowledge (Chen et al., 2019;
Zhou et al., 2020a, 2022; Wang et al., 2022; Yang
et al., 2022), which typically enrich the contextual
information with mentioned entities recognized
over utterances. However, these methods fail to
model the complex causal relations among men-
tioned entities, owing to the diversity of user inter-
est expression and the frequent shift of conversation
topic as shown in Figure 1.

Actually, it is non-trivial to explicitly model the
complex causal relationships of conversations. Al-
though there are several reasoning-based methods
proposed for CRS, their simplified structures make
the objective unattainable. Some researches (Zhou
et al., 2021) track the mentioned entities as lin-
ear sequential fragments analogous to (1) in Fig-
ure 1. However, the linear structure is only suit-
able for adjacent relation modeling, which may
not always work well since the actual causality be-
tween mentioned entities exists multi-hop jumps
(e.g. "comedy"-"La La Land" in Figure 1). Other
studies (Ma et al., 2021) propose other forms of
specially-designed structures for reasoning akin
to (2) in Figure 1, but they generally have fixed
hierarchies, which often degenerate into a simple 2-
layer hierarchy "history"-"prediction", neglecting
the causal relations of historical entities. Therefore,
neither of them is applicable for full modeling of
the complex reasoning causality within conversa-
tions.

To improve the reasoning capability of CRS, the
challenges are twofold. The first challenge lies in
empowering the model to illuminate the causal in-
ference between all mentioned entities. To tackle
this, we performs abductive reasoning for each
mentioned entity to construct the multi-hierarchical
reasoning tree. The reasoning tree explicitly pre-
serves logical relations between all entities and
can be continuously expanded as the conversation
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Yeah, but this time I wanna watch more 
relaxing ones. Comedies2 or animations3

sound better.

How about La La Land4?  It’s a musical 

comedy2. I like Ryan Gosling5, the actor 

in it.

Oh, I am a big fan of the actress, Emma 
Stone6. I love her Birdman7 very much.

Oh, in that case, you can try The 
Favorite8. A great black comedy acted by 

her.

Do you like Captain American1?

Figure 1: An example of conversational recommendation scenarios and three kinds of reasoning structures for
CRS. In the conversation example, entities are marked in red and the upper-left number corresponds to the figure
in the reasoning structure. (1) corresponds to the linear structure. (2) corresponds to the structure with two fixed
hierarchies (history-prediction), flattening all the mentioned entities at the first hierarchy. (3) corresponds to our
multi-hierarchical structure of TREA.

continues, which provides the model with a clear
reference to historical information for prediction.
The second challenge is how to utilize reasoning
information in response generation. We enable the
model to extract relevant textual information from
the historical conversation with the corresponding
reasoning branch, thus promoting the correlation
between generated responses and recommended
items. We name this Tree-structure Reasoning
schEmA TREA.

To validate the effectiveness of our approach, we
conduct experiments on two public CRS datasets.
Experimental results show that our TREA outper-
forms competitive baselines on both the recommen-
dation and conversation tasks. Our main contribu-
tions are summarized as follows:

• To the best of our knowledge, it is the first
trial of CRS to reason every mentioned entity
for its causation.

• We propose a novel tree-structured reasoning
schema to clarify the causality relationships
between entities and mutual the reasoning in-
formation with the generation module.

• Extensive experiments demonstrate the effec-
tiveness of our approach in both the recom-
mendation and conversation tasks.

2 Related Work

Conversational Recommender System (CRS) ex-
plores user preference through natural language

dialogues. Previous works can be roughly catego-
rized into two types. The first category of CRS
is recommendation-biased CRS (Sun and Zhang,
2018; Lei et al., 2020b,a; Deng et al., 2021; Zhang
et al., 2022). This category focuses solely on inter-
active recommendations but the function of natural
language is ignored. Several fixed response tem-
plates are preset on the agents and users cannot use
free text but only have limited options, which can
be detrimental to the user experience.

The other category of CRSs is dialog-biased
CRS (Li et al., 2018; Moon et al., 2019; Chen et al.,
2020; Liu et al., 2021; Sarkar et al., 2020). This cat-
egory emphasizes the critical effect of natural lan-
guage, aiming to understand user utterances for ac-
curate recommendations and generate human-like
responses. Noticing that entities (Gu et al., 2022;
Qu et al., 2022, 2023) mentioned in conversations
are important cues for modeling user preferences,
Chen et al. (2019) firstly integrates KG to enhance
the user representation. Zhou et al. (2020a); Liang
et al. (2021) use two KGs on entity-granularity
and word-granularity respectively to represent the
user preference more comprehensively. Subse-
quent researches introduce other types of external
knowledge e.g. item description (Lu et al., 2021;
Zhou et al., 2022) or pretrained language models
(PLMs) (Yang et al., 2022; Wang et al., 2022) to
further assist the user representations. However,
they commonly treat each mentioned knowledge
piece equally and integrate them into an aggregated
representation.
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Figure 2: The overview of our proposed TREA. We first encode the entities and the sentences in the dialog history.
Then we aggregate the information of each reasoning branch in the current reasoning tree. Later, a comprehensive
representation of dialog semantics measures the devotion of each reasoning branch to the current recommendation.
After the current turn enhancement, we select the entity to join the reasoning tree with the connection strategy. The
extended reasoning branch guide the extraction of relevant textual information for the generation module.

Recently, some researches manage to model the
reasoning process during conversations. Zhou et al.
(2021) linearize the mentioned entity sequence and
reasoning the inferential causality between the adja-
cent entity pairs. Ma et al. (2021) create non-linear
reasoning structures, but they do not preserve the
hierarchy of historical turns. Therefore these rea-
soning methods have limited performance improve-
ment.

To sort out the causal relations among utterances,
our model performs tree-structured reasoning on
the entire dialogue history for each mentioned en-
tity. We also inject the reasoning information into
the generation process to make responses more
relevant, achieving that the reasoning process facil-
itates both recommendation and generation tasks
simultaneously.

3 Methods

In this section, we present the Tree-structure rea-
soning schema TREA as demonstrated in Figure
2. Specifically, we first introduce the encoding of
entities and word tokens. Then we illustrate the
construction procedure of the reasoning tree. Later,
we describe how the reasoning information sup-
ports the generation module. Finally, we explain
the process of parameter optimization.

3.1 Entity and Dialog Encoding

Following previous works (Chen et al., 2019; Zhou
et al., 2020a; Ma et al., 2021; Zhou et al., 2022),

we first perform entity linking based on an external
KG DBpedia (Bizer et al., 2009), and then encode
the relational semantics via a relational graph neu-
ral network (RGCN) (Schlichtkrull et al., 2018) to
obtain the corresponding entity embeddings. For-
mally, the embedding nl+1

e of entity e at the l+1-th
graph layer is calculated as:

nl+1
e = σ(

∑
r∈R

∑
e′∈N r

e

1

Ze,r
Wl

rnl
e′ + Wlnl

e) (1)

where R is a relation set, N r
e denotes the set

of neighboring nodes for e under the relation r,
Wl

r,Wl are learnable matrices for relation-specific
aggregation with neighboring nodes and represen-
tation transformation respectively, Ze,r is a nor-
malization factor, σ denotes the sigmoid function.
The semantic information of word tokens is en-
coded by an external lexical knowledge graph Con-
ceptNet (Speer et al., 2017). We further adopt a
graph convolutional neural network (GCN) (Kipf
and Welling, 2016) to propagate and aggregate in-
formation over the entire graph.

3.2 Reasoning Tree Construction.
The construction of reasoning trees is introduced
in a manner similar to mathematical induction. We
first explain the structure initialization at the first
conversation round, then illustrate the structure
transition from the (n-1)-th round to the n-th round.
The structure of the whole tree can be deduced ac-
cordingly.



To initialize the reasoning tree, we first set a
pseudo node as the root node. The root node does
not represent any entity in the conversations but is
just a placeholder. When the first utterance is com-
ing, the first mentioned entity is directly connected
to the root node. The subsequent entities in the first
utterance are connected following the Algorithm 1.

When the conversation progresses to (n-1)-th
round, the known conditions are as follows: the
current reasoning tree Tn−1, utterance tokens se-
quences st. They are utilized for the extension of
the reasoning tree Tn−1, which is described in two
parts, tree-structure reasoning and the selection &
connection of candidate entities.

Tree-Structure Reasoning. We embed all the
reasoning branches and pad them to a certain length
lr. A path from the root node to any leaf node of
the tree is referred to as a reasoning branch since it
expresses a chain of coherent inferences. To repre-
sent the sequential information for each reasoning
branch, we inject a learnable position embedding
into the embedding of each entity element. The
position-enhanced branch embedding matrix is de-
noted as P ∈ Rnr×lr×d where nr is the branch
number of Tn−1 and d is the dimension of embed-
dings. We incorporate a linear attention mechanism
to integrate the representation of each path. The
attention scores are calculated as follows:

P̃ = Attn(P) = Pαr

αr = Softmax(br tanh(WrP))
(2)

where Wr,br are learnable parameters. Embed-
dings of entities in a certain reasoning branch are
aggregated according to the attention score. Then
we can obtain the comprehensive representations
of reasoning branches denoted as P̃ ∈ Rnr×d.

Selection & Connection. Since the reasoning
branches have varying-degrees contributions to the
next-hop entity, the model analyzes the semantics
of word tokens st to measure the impact of each
branch. The formulas are as follows:

p = Attn(γP̃ + (1− γ)s)

γ = σ(WsConcat(P̃ , s))
(3)

where Ws is a learnable parameter, s is the compre-
hensive semantic representation of the word tokens
in ConceptNet which are aggregated with the linear
attention mechanism in Eq.2. Then we can obtain
the user representation pu that combines semantic
and reasoning information. Since the latest turn has
a prominent significance to the response (Li et al.,

2022), we collect the entities and word tokens from
the current conversation turn, embedded to ec, sc.
Then we aggregate the current turn information and
mutual it with acquired representation p as follows:

pu = g(p, g′(Attn(ec),Attn(sc)) (4)

where g(· , ·), g′(· , ·) are two gate layers like Eq.3.
Then we derive the next-hop possibility distribution
from the overall user representation:

Pu
r = Softmax([pueT

0 , · · · ,pueT
n]) (5)

where e0, · · · , en are representations of all entities.
The entity with the largest probability is selected
and connected to the reasoning tree. The connec-
tion strategy is as Algorithm 1.

Algorithm 1: Connection Strategy
input :Selected entity e∗; Entity sequence

ES in reverse order of mention;
Reasoning Tree T with root node r

1 foreach e in ES do
2 if IsAdj(e,e∗) then
3 // Two entities are adjacent in KG;
4 AddEdge(e,e∗);
5 // Add an edge (e, e∗) in T ;
6 return
7 end
8 end
9 AddEdge(r,e∗);

10 return

3.3 Reasoning-guided Response Generation
After adding the predicted entity to the reasoning
tree, the objective of the conversation module is
to generate utterances with high relevance to the
predicted entity. Reasoning branches that involve
the new entity and the historical utterances that
mention the relevant entities in branches are ex-
tracted, which are encoded by RGCN and stan-
dard Transformer (Vaswani et al., 2017) respec-
tively. The corresponding embedding matrices are
denoted as E,U. Following (Zhou et al., 2020a),
we incorporate multiple cross-attention layers in a
Transformer-variant decoder to fuse the two groups
of information. The probability distribution over
the vocabulary is calculated as follows:

Rl = Decoder(Rl−1,E,U) (6)

Rb = FFN(Concat(Attn(E),Rl)) (7)

Pg = Softmax(RlVT + RbWv) (8)



where V is the embedding matrix of all words in
the vocabulary, Wv is a learnable parameter that
converts the Rb dimension to |V|. The copy mech-
anism is adopted in Eq.7 to enhance the gener-
ation of knowledge-related words. The transfor-
mation chain (Zhou et al., 2020a) in the decoder
of Eq.6 is generated words → relevant entities →
historical utterances.

3.4 Optimization
The parameters can be categorized into two parts,
the reasoning parameters and the generation param-
eters, denoted by θr, θg. The reasoning objective
is to maximize the predicted probability of the up-
coming entity. The cross-entropy loss is adopted to
train the reasoning module. During the training, we
propose two auxiliary loss functions, isolation loss
to maintain the independence of each reasoning
branch, and alignment loss to bridge the represen-
tation gap.

Isolation Loss. Since reasoning branches that
have no shared parts are generally irrelevant, rep-
resentations from different reasoning branches are
expected to be dissimilar. To maintain the isola-
tion of each reasoning branch, we propose isolation
loss. Given representations of different reasoning
branches, the isolation loss is calculated as

LI =
∑
i ̸=j

sim(p̃i, p̃j) =
∑
i ̸=j

p̃ip̃j

|p̃i| ·
∣∣p̃j

∣∣ (9)

where p̃i, p̃j are representations of two different
reasoning branches extracted from P̃.

Alignment Loss. The representation gap ex-
ists between the semantics and the entities since
their encoding processes are based on two separate
networks. Hence the entity representation and se-
mantic representation of the same user should be
dragged closer; those of different users should be
pushed further to reduce the gap. The formula is as
follows:

La = λcsim(pc, sc) + (1− λc)sim(p, s) (10)

where pc, sc are aggregated representation
Attn(ec),Attn(wc) in Eq.4, λc is a hyperparameter.

Then We can optimize parameters θr through
the following formula:

Lr = −
∑
u

∑
ei

logPu
r [ei] + λILI + λaLa (11)

where ei is the order of the target entity at the i-th
conversation round of user u, λI , λal are hyperpa-
rameters.

When the reasoning loss Lr converges, we op-
timize the parameters in θg. After obtaining the
relevant entities and utterances via the reasoning
tree, we calculate the probability distribution of the
next token. To learn the generation module, we set
the cross-entropy loss as:

Lg = − 1

N

N∑
t=1

logPt
g(st|s1, s2, . . . , st−1) (12)

where N is the number of turns in a certain conver-
sation C. We compute this loss for each utterance
st from C.

4 Experiment

4.1 Dataset.

We conduct our experiments on two widely-applied
benchmark datasets on CRS, which are multilin-
gual including English (ReDial) and Chinese (TG-
ReDial). ReDial(Li et al., 2018) collects high-
quality dialogues for recommendations on movies
through crowd-sourcing workers on Amazon Me-
chanical Turk(AMT). The workers create conver-
sations for the task of movie recommendation in
a user-recommender pair setting following a set
of detailed instructions. It contains 10,006 con-
versations consisting of 182,150 utterances. TG-
ReDial(Zhou et al., 2020b) is annotated in a semi-
automatic way. It emphasizes natural topic transi-
tions from non-recommendation scenarios to the
desired recommendation scenario. Each conversa-
tion includes a topic path to enforce natural seman-
tic transitions. It contains 10,000 conversations
consisting of 129,392 utterances.

4.2 Baselines

We evaluate the effectiveness of our model with
following competitive baselines:

ReDial (Li et al., 2018) comprises a conversa-
tion module based on hierarchical encoder-decoder
architecture(Serban et al., 2017) and a recommen-
dation module based on auto-encoder.

KBRD (Chen et al., 2019) firstly utilizes KG
to enhance the user representation. The Trans-
former(Vaswani et al., 2017) architecture is applied
in the conversation module.

KGSF (Zhou et al., 2020a) incorporate two ex-
ternal knowledge graphs on different aspects to
further enhance the user representations. The KG
information is employed in the decoding process.



Dataset ReDial TG-ReDial

Method R@10 R@50 Dist-3 Dist-4 Bleu-2 Bleu-3 R@10 R@50 Dist-3 Dist-4 Bleu-2 Bleu-3

ReDial 0.140 0.320 0.269 0.464 0.022 0.008 0.002 0.013 0.529 0.801 0.041 0.010
KBRD 0.150 0.336 0.288 0.489 0.024 0.009 0.032 0.077 0.691 0.997 0.042 0.012
KGSF 0.183 0.377 0.302 0.518 0.025 0.009 0.030 0.074 1.045 1.579 0.046 0.014

RevCore 0.204 0.392 0.307 0.528 0.025 0.010 0.029 0.075 1.093 1.663 0.047 0.014
CR-Walker 0.187 0.373 0.338 0.557 0.024 0.009 - - - - - -

CRFR 0.202 0.399 0.516 0.639 - - - - - - - -
C2-CRS 0.208 0.409 0.412 0.622 0.027 0.012 0.032 0.078 1.210 1.691 0.048 0.015
UCCR 0.202 0.408 0.329 0.564 0.026 0.011 0.032 0.075 1.197 1.668 0.049 0.014

TREA 0.213∗ 0.416∗ 0.692∗ 0.839∗ 0.028∗ 0.013∗ 0.037∗ 0.110∗ 1.233∗ 1.712∗ 0.050∗ 0.017∗

Table 1: Automatic evaluation results on two datasets. Boldface indicates the best results. Significant improvements
over best baseline marked with ∗.(t-test with p < 0.05)

CRFR (Zhou et al., 2021) can generate several
linear reasoning fragments through reinforcement
learning to track the user preference shift.

CR-Walker (Ma et al., 2021) create a two-
hierarchy reasoning tree between history and fore-
cast and preset several dialog intents to guide the
reasoning.

C2-CRS (Zhou et al., 2022) proposed a con-
trastive learning based pretraining approach to
bridge the semantic gap between three external
knowledge bases.

UCCR (Li et al., 2022) considers multi-aspect
information from the current session, historical ses-
sions, and look-alike users for comprehensive user
modeling.

4.3 Metrics
For recommendation evaluation, we used Re-
call@n (R@n,n=10,50), which shows whether the
top-n recommended items include the ground truth
suggested by human recommenders. For the re-
sponse generation task, we evaluate models by
Bleu-n(n=2,3) (Papineni et al., 2002), Dist-n(n=3,4)
(Li et al., 2016) for word-level matches and diver-
sity. To evaluate the generation performance more
equitably, three annotators are invited to score the
generated candidates from two datasets for human
evaluation on the following three aspects: Flu-
ency, Relevance, and Informativeness. The inter-
annotator coherence is measured by Fleiss’ Kappa.

4.4 Implementation Details
We keep the same data preprocessing steps and hy-
perparameter settings as previous researches (Zhou
et al., 2022; Ma et al., 2021). We adopt the same
mask mechanism as NTRD(Liang et al., 2021).

The embedding dimensions of reasoning and gen-
eration are set to 300 and 128 respectively. In the
encoding module, the word embeddings are initial-
ized via Word2Vec1 and the layer number is set
to 1 for both GNN networks. The normalization
constant of RGCN is 1. We use Adam optimizer
(Kingma and Ba, 2015) with the default parameter
setting. For training, the batch size is set to 64, the
learning rate is 0.001, gradient clipping restricts
the gradients within [0,0.02]. For hyperparame-
ters, Ze, r of RGCN in Eq.1 is 1, λc of representa-
tion alignment in Eq.10 is 0.9, λI , λa in Eq.11 is
0.008, 0.002 respectively.

4.5 Overall Performance Analysis

Recommendation. The columns R@10,R@50 of
Table 1 present the evaluation results on the recom-
mendation task. It shows that our TREA signifi-
cantly outperforms all the baselines by a large mar-
gin on both two datasets, which verifies that TREA
can clarify the sophisticated causality between the
historical entities and accurately model the user
preferences. Moreover, even though RevCore and
C2-CRS utilize the additional knowledge, they are
still not as effective as TREA, which further proves
the significance of correct reasoning. CR-walker
and CRFR are two previous methods that manage
to reason over the background knowledge. CR-
Walker does not preserve the hierarchy between the
historical information and CRFR linearizes the rea-
soning structure. Therefore even though CR-walker
conducts the additional annotations of dialog in-
tents and CRFR applies the reasoning on another

1https://radimrehurek.com/gensim/models/
word2vec.html

https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html


KG to assist, the performance raising is limited,
which certifies that our non-linear tree-structured
reasoning over all mentioned entities does facilitate
the user modeling.

Method Rel. Inf. Flu. Kappa

RevCore 1.98 2.22 1.53 0.78
CR-Walker 1.79 2.15 1.68 0.77

C2-CRS 2.02 2.25 1.69 0.66
UCCR 2.01 2.19 1.72 0.72

TREA 2.43 2.26 1.75 0.75

Table 2: Human evaluation results on the conversation
task. Rel., Inf. and Flu. stand for Relevance, Informa-
tiveness and Fluency respectively. Boldface indicates
the best results (t-test with p < 0.05).

Generation. The columns Dist-n, Bleu-n of Ta-
ble 1 present the automatic evaluation results on the
conversation task. Since CR-walker adopts GPT-2
in the original model, we initialize the generation
module with Word2Vec instead for a fair compar-
ison. It shows that TREA surpasses all baselines
on generation diversity and matchness. Table 2
presents the human evaluation results. All Fleiss’s
kappa values exceed 0.6, indicating crowd-sourcing
annotators have reached an agreement. The results
show that our TREA leads to a higher relevance of
generated utterances. It can be derived that the ex-
traction of relevant information with the reasoning
tree does improve the relevance of the generation.

4.6 Ablation Study

Recommendation. The parameter optimization
for the reasoning module involves two additional
loss, isolation loss (Iso.) LI and alignment loss
(Aln.) La. We would like to verify the effective-
ness of each part. We incorporate three variants
of our model for ablation analysis on the recom-
mendation task, namely TREA w/o Iso., TREA w/o
Aln. and TREA w/o IA., which remove the isola-
tion loss, the alignment loss and both of them re-
spectively. As shown in Table 3, both components
contribute to the final performance. Furthermore,
we can see that removing the isolation loss leads to
a large performance decrease, which suggests that
maintaining the representation dependence of each
reasoning branch is crucial to the correctness of the
reasoning.

To further confirm that the performance improve-
ment is consistent and stable instead of acciden-

(a) Recall@50

(b) Recall@10

Figure 3: Performance comparison of TREA and its two
variants. One step (X-axis) denotes parameter updates
for 20 batches of training data.

Dataset ReDial TG-ReDial

Method R@10 R@50 R@10 R@50

TREA 0.214 0.418 0.037 0.110
TREA w/o Iso. 0.202 0.405 0.028 0.079
TREA w/o Aln. 0.209 0.412 0.035 0.103
TREA w/o IA. 0.201 0.403 0.026 0.076

Table 3: Ablation results on the recommendation task.
(t-test with p < 0.05)

tal. We test the models under different iteration
steps and display the corresponding results in Fig-
ure 3. It can be seen that when the training loss
converges, each ablation component contributes to
the model performance regardless of the iteration
number, which proves that the two additional loss
functions are stably effective.

The Effect of Isolation Loss. The above subsec-
tion has verified the great impact of the isolation
loss. We take a deeper dive to determine how it
benefits model performance. If removing the isola-
tion loss, since each reasoning branch participates
in the calculation of the predicted possibility distri-
bution, the representations of entities in different
reasoning branches would approach each other for
sharper descending of the loss value, which means
that the representation of unrelevant entities would
get similar irrationally and finally lead to the rep-
resentation convergence of the entire knowledge
graph. To confirm the assumption, we display the
entity embeddings trained by TREA and TREA



Figure 4: 2D projection of KG embeddings trained by
TREA (the above) and TREA w/o Iso. (the below) to il-
lustrate the impact of the isolation loss LI . Embeddings
are projected through t-SNE with Perplexity set to 10
and the Iterations set to 13.)

w/o Iso. in Figure 4. It shows that representa-
tions of KG entities in model without the isolation
loss are more congested and less distinguishable.
It demonstrates the isolation loss can prohibit the
clustering of the nodes in KG, which is consistent
with the above conjecture.

Generation. To examine whether the extrac-
tion of the relevant information through the rea-
soning tree benefits the generation, we conduct
the ablation study based on three variants of our
complete model, which utilize the whole historical
entities, the whole historical utterances and both
of the above without extraction, namely TREA w/o
Ent., TREA w/o Utt., TREA w/o EU. respectively.
The results in Table 4 show that deleting either ex-
traction brings a performance decrease on all gen-
eration metrics. PPL (Perplexity) is an automatic
evaluation metric for the fluency of generations
and confidence in the responses. The results of
PPL show that the extraction of the relevant infor-
mation reduced the model confusion. A substantial
decrease on Rel. shows that reasoning-guided ex-
traction especially influences the relevance of the
generation.

4.7 Evaluation on Long Conversations

We further evaluate TREA in long conversation
scenarios. To the best of our knowledge, it is the

Model Dist-4 Bleu-3 PPL(↓) Rel.

TREA 0.839 0.013 4.49 2.43
TREA w/o Ent. 0.799 0.012 4.56 2.28
TREA w/o Utt. 0.764 0.011 4.61 2.13
TREA w/o EU. 0.789 0.011 4.78 2.10

Table 4: Evaluation results on the ablation study of the
generation task. Fleiss’s kappa values of Rel. all exceed
0.65.

(a) ReDial (b) TG-ReDial

Figure 5: Evaluation results (R@50) of TREA and
UCCR on data of different converstaion rounds.

first time to discuss this aspect of CRS. When the
dialogue becomes longer and more knowledge in-
formation appears, if the relationships between
knowledge pieces are not clarified, the model is
not able to utilize the historical information effec-
tively. We evaluate our TREA and a competitive
baseline UCCR on data of different conversation
rounds, measured by the metric Recall@50. The
results in Figure 5 shows that the performance of
UCCR decreases sharply when the conversation
rounds exceed 12 in ReDial and 14 in TG-ReDial.
On the contrary, the performance of TREA fluc-
tuates less as the number of conversation rounds
increases. It indicates that the reasoning process
of TREA can illuminate sophisticated relationships
between historical entities for a better reference
to the current situation, which further proves that
nonlinear reasoning with historical hierarchy is vi-
tal to modeling user preference, especially when
the conversation is long and the informativeness is
great.

5 Conclusion

In this paper, we propose a novel tree-structure
reasoning schema for CRS to clarify the sophis-
ticated relationships between mentioned entities
for accurate user modeling. In the constructed rea-
soning tree, each entity is connected to its cause
which motivates the mention of the entity to pro-



vide a clear reference for the current recommenda-
tion. The generation module also interacts with the
reasoning tree to extract relevant textual informa-
tion. Extensive experimental results have shown
that our approach outperforms several competitive
baselines, especially in long conversation scenar-
ios.

6 Limitations

The construction of the reasoning tree may be af-
fected by the KG quality since the connection oper-
ations are variant with the KG structure. Hence the
unsolved problem in Knowledge Graph such as in-
completeness or noise could disturb the reasoning
process. In the future, we will explore a solution to
alleviate the influence of the side information.
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